Review: On the Within-Group Fairness of screening Classifier

February 22, 2024

Seoul National University

Introduction

- Any threshold decision rule that uses calibrated screening classifiers may be biased against qualified candidates within demographic groups of interest
- More specifically, it may shortlist one or more candidates from a group who are less likely to be qualified than one or more rejected candidates from the same group.
- They have developed a polynomial time algorithm based on dynamic programming to minimally modify any given calibrated classifier so that it satisfies within-group monotonicity, a natural monotonicity property that prevents the occurrence of within-group unfairness.

Preliminaries

Notation

a candidate with a feature vector
$$x \in \mathcal{X}$$
 demographic group $z \in \mathcal{Z}$, can be qualified $(y = 1)$ or unqualified $(y = 0)$ $f: \mathcal{X} \to \mathsf{Range}\ (f) \subseteq [0,1]:$ calibrated screening classifier f is calibrated iff $\forall a \in \mathsf{Range}(f), \ P(Y = 1 \mid f(X) = a) = a$ a screening policy $\pi: [0,1]^m \to \mathcal{P}\left(\{0,1\}^m\right)$ threshold decision rule: $s_i = \begin{cases} 1 & \text{if } f\left(x_i\right) > t_f \\ \mathsf{Bernoulli}\left(\theta_f\right) & \text{if } f\left(x_i\right) = t_f \\ 0 & \text{otherwise} \end{cases}$

with candidate is shortlisted $(s_i = 1)$ or is not shortlisted $(s_i = 0)$

Unfairness

- The following proposition shows that any threshold decision rule may be biased against qualified members within demographic groups
- Proposition 2.1 Let π be a screening policy given by a threshold decision rule using a calibrated classifier f with threshold t. Assume there exist $a,b\in$ Range (f), with a < t < b, and $z \in \mathcal{Z}$ such that $P(Y=1 \mid f(X)=a,Z=z) > P(Y=1 \mid f(X)=b,Z=z)$. Then, it holds that $\mathbb{E}_{Y \sim P_{Y|X,Z},S \sim \pi}[Y(1-S) \mid f(X)=a,Z=z] > \mathbb{E}_{Y \sim P_{Y|X,Z},S \sim \pi}[YS \mid f(X)=b,Z=z]$
- The above result implies that there exist pools of applicants for which an
 optimal policy using a calibrated classifier may shortlist a candidate from a group
 who is less likely to be qualified than a rejected candidate from the same group.

Unfairness

- (a): candidates who are shortlisted (f(X) > t) are more likely to be qualified (Y = 1) than those who are rejected (f(X) < t)
- (b) and (c) show that, after conditioning on their gender, candidates who are rejected (f(X) < t) are more likely to be qualified than those who are short listed (f(X) > t)

within-group Monotonicity

• Definition 2.2

Given a set of groups \mathcal{Z} , a classifier f is within-group monotone if, for any $z \in \mathcal{Z}$ and $a,b \in \mathsf{Range}\ (f)$ such that $a < b, \Pr(Z = z \mid f(X) = a) > 0$ and $\Pr(Z = z \mid f(X) = b) > 0$, it holds that

$$\Pr(Y = 1 \mid f(X) = a, Z = z) \le \Pr(Y = 1 \mid f(X) = b, Z = z).$$

A Set Partitioning

Post-Processing Framework

A Set Partitioning Post-Processing Framework

$$f$$
: calibrated classifier with Range(f) = $\{a_1,...,a_n\}$, $Pr(f(X) = a_i) = \rho_i$ $|Range(f)| = n < \infty$ WLOG assume that $a_i < a_j$ for any $i < j$ $Pr(Y = 1 \mid f(X) = a_i, Z = z) = a_{i,z}$ and $Pr(Z = z \mid f(X) = a_i) = \rho_{z|i}$, $a_i = \sum_{z \in \mathcal{Z}} \rho_{z|i} a_{i,z}$

Then, our goal is to modify f minimally so that it is within-group monotone.

A Set Partitioning Post-Processing Framework

• Idea

classifier f induces a partition of $\mathcal X$ into n disjoint bins $\{\mathcal X_1,\dots,\mathcal X_n\}$

where each bin \mathcal{X}_i is characterized by a_i and ρ_i

Then seek to **merge** a small number of these induced bins to achieve within-group monotonicity.

A Set Partitioning Post-Processing Framework

Notation

 \mathcal{P} : set of all partitions of the bin indices $\{1,...,n\}$

 $\mathcal{B}\in\mathcal{P}$: a partition of the bin indices into a collection of disjoint equivalence classes $,\{A_1,...,A_{|B|}\},$ which we call cells

$$i(x) = \{i | f(x) = a_i\}$$
: for $x \in \mathcal{X}$, index of the bin it belongs represent a cell in \mathcal{B} containg index $i(x)$ by $[i(x)]_{\mathcal{B}}$

$$f_{\mathcal{B}}: \mathcal{X} \to \mathsf{Range}\left(f_{\mathcal{B}}\right) = \left\{a_{\mathcal{A}}\right\}_{\mathcal{A} \in \mathcal{B}}$$
, where $a_{\mathcal{A}} = \frac{\sum_{j \in \mathcal{A}} a_{j} \rho_{j}}{\sum_{j \in \mathcal{A}} \rho_{j}}$ and $f_{\mathcal{B}}(x) = a_{[i(x)]}$.

$$\Pr(Y = 1 \mid f_{\mathcal{B}}(X) = a_{\mathcal{A}}) = \frac{\sum_{j \in \mathcal{A}} a_{j} \rho_{j}}{\sum_{j \in \mathcal{A}} \rho_{j}} = a_{\mathcal{A}}$$

$$\Pr\left(Y = 1 \mid f_{\mathcal{B}}(X) = a_{\mathcal{A}}, Z = z\right) = \frac{\sum_{j \in \mathcal{A}} \rho_j \rho_{z|j} a_{j,z}}{\sum_{j \in \mathcal{A}} \rho_j \rho_{z|j}} := a_{\mathcal{A},z}$$

Goal

Optimal Set Partitioning via

Dynamic Programming

Optimal Set Partitioning via Dynamic Programming

Algorithm 2 It returns the optimal partition \mathcal{B}^* such that $f_{\mathcal{B}^*}$ is within-group monotone.

```
1: Input: \{a_{1,z}, \dots, a_{n,z}\}_{z \in \mathbb{Z}}
 2: Initialize: \mathcal{B}_{l,r} = \{\} \ \forall \tilde{l}, \tilde{r} \in \{2, ..., n\}, \ \mathcal{B}_{1,r} = \{1, ..., r\} \ \forall r \in \{1, ..., n\}
 3: for l \in \{2, ..., n\} do
         for r \in \{l, ..., n\} do
             S_{l,r} = \{k | k < l, a_{\{k,\dots,l-1\},z} \le a_{\{l,\dots,r\},z} \ \forall z \in \mathcal{Z}\} {Refer to Lemma. 4.3}
 5:
        if S_{l,r} = \emptyset then
 6:
                  Continue {In this case \mathcal{B}_{l,r} = \emptyset}
 7.
             end if
        k^* = \operatorname{argmax}_{k \in \mathcal{S}_{l-r}} |\mathcal{B}_{k,l-1}|
         \mathcal{B}_{l,r} = \mathcal{B}_{k^*,l-1} \cup \{\{l,\ldots,r\}\}
10:
          end for
11:
12: end for
13: l^* = \operatorname{argmax}_{i \in \{1,...,n\}} |\mathcal{B}_{i,n}|
14: return \mathcal{B}_{l^*,n}
```

Optimal Set Partitioning via Dynamic Programming

Let B_r be the set of partitions of the $bin\ indices\{1,\ldots,r\}, with\ r\leq n,$ and $B_{l,r}\subseteq B_r$ be the subset of those partitions such that, for any $\mathcal{B}=\left\{\mathcal{A}_1,\ldots,\mathcal{A}_{|\mathcal{B}|}\right\}\in B_{l,r}$, it holds that $\mathcal{A}_{|\mathcal{B}|}=\{l,\ldots,r\}$ and $f_{\mathcal{B}\cup\mathcal{B}'}$ is within-group monotone on the region of the feature space defined by $\cup_{i\leq r}\mathcal{X}_i$, where \mathcal{B}' is any partition of the bin indices $\{r+1,\ldots,n\}$.

Then, it clearly holds that the optimal partition $\mathcal{B}^* \in \bigcup_{l=1}^n B_{l,n}$ and thus we can break the problem of finding \mathcal{B}^* into n subproblems, i.e., finding the optimal partition $\mathcal{B}^*_{l,n} = \operatorname{argmax}_{\mathcal{B} \in \mathcal{B}_{l,n}} |\mathcal{B}|$ within in each subset $B_{l,n}$.

Consequently, we can efficiently find all the partitions in the subsets $B_{l,r}$ iterating through l using the partitions in the subsets $B_{k,l-1}$ with k < l. Finally, by construction, it clearly holds that, if $\mathcal{B}_{l,r}^* = \mathcal{B}' \cup \{\{l,\ldots,r\}\}$, with $\mathcal{B}' \in \mathcal{B}_{k,l-1}$, is the optimal partition in $B_{l,r}$ then $\mathcal{B}' = \mathcal{B}_{k,l-1}^*$ is the optimal partition in $B_{k,l-1}$. As a result, at each step of the recursion, we only need to store the optimal partition $\mathcal{B}_{l,r}^*$, not all partitions in $B_{l,r}$.

Experiments

