Review: On the Within-Group Fairness of screening Classifier

February 22, 2024
Seoul National University

Introduction

- Any threshold decision rule that uses calibrated screening classifiers may be biased against qualified candidates within demographic groups of interest
- More specifically, it may shortlist one or more candidates from a group who are less likely to be qualified than one or more rejected candidates from the same group.
- They have developed a polynomial time algorithm based on dynamic programming to minimally modify any given calibrated classifier so that it satisfies within-group monotonicity, a natural monotonicity property that prevents the occurrence of within-group unfairness.

Preliminaries

- Notation
a candidate with a feature vector $x \in \mathcal{X}$
demographic group $z \in Z$, can be qualified $(y=1)$ or unqualified $(y=0)$

$$
\begin{aligned}
& f: \mathcal{X} \rightarrow \text { Range }(f) \subseteq[0,1]: \text { calibrated screening classifier } \\
& f \text { is calibrated iff } \forall a \in \operatorname{Range}(f), P(Y=1 \mid f(X)=a)=a \\
& \text { a screening policy } \pi:[0,1]^{m} \rightarrow \mathcal{P}\left(\{0,1\}^{m}\right) \\
& \text { threshold decision rule }: s_{i}= \begin{cases}1 & \text { if } f\left(x_{i}\right)>t_{f} \\
\operatorname{Bernoulli}\left(\theta_{f}\right) & \text { if } f\left(x_{i}\right)=t_{f} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

with candidate is shortlisted $\left(s_{i}=1\right)$ or is not shortlisted $\left(s_{i}=0\right)$

Unfairness

- The following proposition shows that any threshold decision rule may be biased against qualified members within demographic groups
- Proposition 2.1 Let π be a screening policy given by a threshold decision rule using a calibrated classifier f with threshold t. Assume there exist $a, b \in$ Range (f), with $a<t<b$, and $z \in \mathcal{Z}$ such that $P(Y=1 \mid f(X)=a, Z=z)>P(Y=1 \mid f(X)=b, Z=z)$. Then, it holds that $\mathbb{E}_{Y \sim P_{Y \mid X, Z}, S \sim \pi}[Y(1-S) \mid f(X)=a, Z=z]>\mathbb{E}_{Y \sim P_{Y \mid X, Z}, S \sim \pi}[Y S \mid f(X)=b, Z=z]$
- The above result implies that there exist pools of applicants for which an optimal policy using a calibrated classifier may shortlist a candidate from a group who is less likely to be qualified than a rejected candidate from the same group.

Unfairness

(b) Female

(c) Male
(a): candidates who are shortlisted $(f(X)>t)$ are more likely to be qualified $(Y=1)$ than those who are rejected $(f(X)<t)$
(b) and (c) show that, after conditioning on their gender, candidates who are rejected $(f(X)<t)$ are more likely to be qualified than those who are short listed $(f(X)>t)$

within-group Monotonicity

- Definition 2.2

Given a set of groups \mathcal{Z}, a classifier f is within-group monotone if, for any $z \in \mathcal{Z}$ and $a, b \in$ Range (f) such that $a<b, \operatorname{Pr}(Z=z \mid f(X)=a)>0$ and $\operatorname{Pr}(Z=z \mid f(X)=b)>0$, it holds that

$$
\operatorname{Pr}(Y=1 \mid f(X)=a, Z=z) \leq \operatorname{Pr}(Y=1 \mid f(X)=b, Z=z)
$$

A Set Partitioning

Post-Processing Framework

A Set Partitioning Post-Processing Framework

$f:$ calibrated classifier with Range $(f)=\left\{a_{1}, \ldots, a_{n}\right\}, \operatorname{Pr}\left(f(X)=a_{i}\right)=\rho_{i}$

$$
\mid \text { Range }(f) \mid=n<\infty
$$

WLOG assume that $a_{i}<a_{j}$ for any $i<j$

$$
\begin{gathered}
\operatorname{Pr}\left(Y=1 \mid f(X)=a_{i}, Z=z\right)=a_{i, z} \text { and } \\
\operatorname{Pr}\left(Z=z \mid f(X)=a_{i}\right)=\rho_{z \mid i}, \quad a_{i}=\sum_{z \in \mathcal{Z}} \rho_{z \mid i} a_{i, z}
\end{gathered}
$$

Then, our goal is to modify f minimally so that it is within-group monotone.

A Set Partitioning Post-Processing Framework

- Idea
classifier f induces a partition of \mathcal{X} into n disjoint bins $\left\{\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right\}$ where each bin \mathcal{X}_{i} is characterized by a_{i} and ρ_{i}

Then seek to merge a small number of these induced bins to achieve within-group monotonicity.

A Set Partitioning Post-Processing Framework

- Notation
\mathcal{P} : set of all partitions of the bin indices $\{1, \ldots, n\}$
$\mathcal{B} \in \mathcal{P}:$ a partition of the bin indices into a collection of disjoint equivalence classes

$$
\begin{gathered}
,\left\{A_{1}, \ldots, A_{|B|}\right\} \text {, which we call cells } \\
i(x)=\left\{i \mid f(x)=a_{i}\right\}: \text { for } x \in \mathcal{X} \text {, index of the bin it belongs } \\
\text { represent a cell in } \mathcal{B} \text { containg index } i(x) \text { by }[i(x)]_{B} \\
f_{\mathcal{B}}: \mathcal{X} \rightarrow \operatorname{Range}\left(f_{\mathcal{B}}\right)=\left\{a_{\mathcal{A}}\right\}_{\mathcal{A} \in \mathcal{B}} \text {, where } a_{\mathcal{A}}=\frac{\sum_{j \in \mathcal{A}} a_{j} \rho_{j}}{\sum_{j \in \mathcal{A}} \rho_{j}} \text { and } f_{\mathcal{B}}(x)=a_{[i(x)]} \\
\operatorname{Pr}\left(Y=1 \mid f_{\mathcal{B}}(X)=a_{\mathcal{A}}\right)=\frac{\sum_{j \in \mathcal{A}} a_{j} \rho_{j}}{\sum_{j \in \mathcal{A}} \rho_{j}}=a_{\mathcal{A}} \\
\operatorname{Pr}\left(Y=1 \mid f_{\mathcal{B}}(X)=a_{\mathcal{A}}, Z=z\right)=\frac{\sum_{j \in \mathcal{A}} \rho_{j} \rho_{z \mid j} a_{j, z}}{\sum_{j \in \mathcal{A}} \rho_{j} \rho_{z \mid j}}:=a_{\mathcal{A}, z}
\end{gathered}
$$

- Goal
$\underset{\mathcal{B} \in P}{\operatorname{maximize}}|\mathcal{B}| \quad$ subject to $\quad a_{\mathcal{A}_{i}, z} \leq a_{\mathcal{A}_{j}, z} \forall \mathcal{A}_{i}, \mathcal{A}_{j} \in \mathcal{B}$ such that $a_{\mathcal{A}_{i}}<a_{\mathcal{A}_{j}}, \forall z \in \mathcal{Z}$

Optimal Set Partitioning via Dynamic Programming

Optimal Set Partitioning via Dynamic Programming

```
Algorithm 2 It returns the optimal partition \(\mathcal{B}^{*}\) such that \(f_{\mathcal{B}^{*}}\) is within-group monotone.
    Input: \(\left\{a_{1, z}, \ldots, a_{n, z}\right\}_{z \in \mathcal{Z}}\)
    Initialize: \(\mathcal{B}_{l, r}=\{ \} \forall l, r \in\{2, \ldots, n\}, \mathcal{B}_{1, r}=\{1, \ldots, r\} \forall r \in\{1, \ldots, n\}\)
    for \(l \in\{2, \ldots, n\}\) do
        for \(r \in\{l, \ldots, n\}\) do
            \(\mathcal{S}_{l, r}=\left\{k \mid k<l, a_{\{k, \ldots, l-1\}, z} \leq a_{\{l, \ldots, r\}, z} \forall z \in \mathcal{Z}\right\} \quad\{\) Refer to Lemma. 4.3\}
            if \(\mathcal{S}_{l, r}=\emptyset\) then
                Continue \(\left\{\right.\) In this case \(\left.\mathscr{B}_{l, r}=\emptyset\right\}\)
            end if
            \(k^{*}=\operatorname{argmax}_{k \in \mathcal{S}_{l, r},}\left|\mathcal{B}_{k, l-1}\right|\)
            \(\mathcal{B}_{l, r}=\mathcal{B}_{k^{*}, l-1} \cup\{\{l, \ldots, r\}\}\)
        end for
    end for
    \(l^{*}=\operatorname{argmax}_{i \in\{1, \ldots, n\}}\left|\mathcal{B}_{i, n}\right|\)
    return \(\mathcal{B}_{l^{*}, n}\)
```


Optimal Set Partitioning via Dynamic Programming

Let B_{r} be the set of partitions of the bin indices $\{1, \ldots, r\}$, with $r \leq n$, and $B_{l, r} \subseteq B_{r}$ be the subset of those partitions such that, for any $\mathcal{B}=\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{|\mathcal{B}|}\right\} \in B_{I, r}$, it holds that $\mathcal{A}_{|\mathcal{B}|}=\{I, \ldots, r\}$ and $f_{\mathcal{B} \cup \mathcal{B}^{\prime}}$ is within-group monotone on the region of the feature space defined by $\cup_{i \leq r} \mathcal{X}_{i}$, where \mathcal{B}^{\prime} is any partition of the bin indices $\{r+1, \ldots, n\}$.

Then, it clearly holds that the optimal partition $\mathcal{B}^{*} \in \cup_{l=1}^{n} B_{l, n}$ and thus we can break the problem of finding \mathcal{B}^{*} into n subproblems, i.e., finding the optimal partition $\mathcal{B}_{l, n}^{*}=\operatorname{argmax}_{\mathcal{B} \in B_{l, n}}|\mathcal{B}|$ within in each subset $B_{l, n}$.

Consequently, we can efficiently find all the partitions in the subsets $B_{l, r}$ iterating through I using the partitions in the subsets $B_{k, I-1}$ with $k<l$. Finally, by construction, it clearly holds that, if $\mathcal{B}_{l, r}^{*}=\mathcal{B}^{\prime} \cup\{\{I, \ldots, r\}\}$, with $\mathcal{B}^{\prime} \in B_{k, I-1}$, is the optimal partition in $B_{I, r}$ then $\mathcal{B}^{\prime}=\mathcal{B}_{k, I-1}^{*}$ is the optimal partition in $B_{k, l-1}$. As a result, at each step of the recursion, we only need to store the optimal partition $\mathcal{B}_{l, r}^{*}$, not all partitions in $B_{l, r}$.

Experiments

(b) Race code (Z)

